
c© 2003 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored
by a contractor or affiliate of the U.S. Government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes only.

SC’03, November 15–21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011 . . . $5.00

Scalable Hardware-Based Multicast Trees∗

Salvador Coll1 José Duato2 Fabrizio Petrini3

Francisco J. Mora1

1Digital Systems Design (DSD)
2Parallel Architectures Group (GAP)

Technical University of Valencia
Aptdo. 22012 Valencia 46071, SPAIN

{scoll ,fjmora }@eln.upv.es , jduato@gap.upv.es

3Performance and Architecture Laboratory (PAL)
Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory, NM 87545, USA
fabrizio@lanl.gov

Abstract

This paper presents an algorithm for implementing optimal hardware-based multicast
trees, on networks that provide hardware support for collective communication. Although
the proposed methodology can be generalized to a wide class of networks, we apply our
methodology to the Quadrics network, a state-of-the-art network that provides hardware-
based multicast communication. The proposed mechanism is intended to improve the per-
formance of the collective communication patterns on the network, in those cases where
the hardware support can not be directly used, for instance, due to some faulty nodes. This
scheme provides significant reduction on multicast latencies compared to the original sys-
tem primitives, which use multicast trees based on unicast communication. A backtracking
algorithm to find the optimal solution to the problem is presented. In addition, a greedy al-
gorithm is presented and shown to provide near optimal solutions. Finally, our experimental
results show the good performance and scalability of the proposed multicast tree in compar-
ison to the traditional unicast-based multicast trees. Our multicast mechanism doubles bar-
rier synchronization and broadcasts performance when compared to the production-level
MPI library.

1 Introduction

High-performance and scalable collective communication is an important factor to achieve
good performance and improve resource utilization of a parallel computer. On the one hand,
this becomes particularly important if it is considered that scientific codes spend a considerable
part of their run time, in some cases up to 70%, executing collective communication [14]. On
the other hand, resource management greatly conditions the efficient utilization of a parallel
machine. Many recent research results show that job scheduling algorithms can substantially

∗The work was supported by the Spanish CICYT through contract TIC2000-1151-C07-05

mailto:scoll@eln.upv.es
mailto:jduato@gap.upv.es
mailto:fabrizio@lanl.gov
mailto:fjmora@eln.upv.es
http://dsd.upv.es
http://www.gap.upv.es
http://www.upv.es
mailto:scoll@eln.upv.es
mailto:fjmora@eln.upv.es
mailto:jduato@gap.upv.es
http://www.c3.lanl.gov/
http://www.ccs.lanl.gov/
http://www.lanl.gov/
mailto:fabrizio@lanl.gov

improve scalability, responsiveness, resource utilization, fault tolerance and usability of large-
scale parallel computers [1, 8, 11]. In [9] it is shown that, using an optimized implementation
of a small set of mechanisms, typical resource management operations can be significantly im-
proved (i.e. scheduling two orders of magnitude faster than the best previously reported results).
Those mechanisms, which are soon to be common in modern high-performance interconnects,
rely on a number of hardware features provided by the underlying network. Among them, high-
performance hardware-based collective communication primitives have been proven to be par-
ticularly important [9].

The Quadrics interconnection network (QsNET) [12], is being used by some of the most pow-
erful computers in the world (six among the top 10 in the Top500 list1). As shown in [13], al-
though the QsNET shows an outstanding collective communication performance, it is limited to
the case where the destination nodes are consecutive. A single gap in the destination nodes for a
collective communication, i.e. due to a single faulty node or to a job scheduling decision, makes
the hardware support for collective communication completely unusable. A unicast-based mul-
ticast is used instead, with a significant performance penalty (two times slower barrier, and eight
times slower broadcast on a 32-node cluster [4]). This effect increases with the network size,
since the hardware mechanisms provide very good scalability while the software-based primi-
tives show a logarithmic performance degradation.

The above limitation becomes particularly relevant if we consider that clusters of worksta-
tions with thousands of nodes are becoming increasingly popular as high-performance com-
puting platforms. Currently, 6 machines among the top 10 in the Top500 list are clusters. Those
systems, with so many components, have a MTBF which is proportionally reduced as the num-
ber of components increases. As an example, in [10] it is shown that fault-tolerance becomes a
key factor in systems such as BlueGene/L, with 64K processors.

The above scenario shows, on the one hand, that high-performance and scalable collective
communication support is becoming increasingly important in the high-performance comput-
ing arena. On the other hand, the network performance must not degrade drastically when the
nodes allocated to a job are not consecutive; i.e. due to the presence of faults or when the ma-
chine is fragmented after having been allocated to multiple parallel jobs.

In order to overcome these constraints, a new multicast mechanism, which is intended to
enhance multicast transmissions in those cases where the hardware support is not directly us-
able, is presented in this paper. This technique uses a multicast tree to distribute the data among
all the destinations, but with the particular feature that each message is a hardware multicast.
Several open problems have been addressed: first, multiple broadcasts in parallel may lead to a
deadlock [7]; and, second, the network serializes all the broadcasts through a tree [13]. On the
other hand, it is shown that our strategy is likely to provide performance figures very close to
those provided by the original hardware mechanisms, significantly outperforming the behavior
of the unicast-based multicast when the number of destinations is high.

The rest of the paper is organized as follows. Section 2 presents the point-to-point routing
mechanisms used by the QsNET, while Section 3 describes the network support for collective
communication. Section 4 presents the hardware-based multicast trees developed by us and
Section 5 proposes two algorithm implementations to obtain multicast trees. Section 6 discusses
the experimental results and provides insight onto several aspects of the proposed algorithms.
Finally, in Section 7 some conclusions are drawn and future directions are given.

1http://www.top500.org/list/2003/06/

2

http://www.top500.org/list/2003/06/
http://www.top500.org/list/2003/06/

2 Routing issues

The Quadrics network is a butterfly bidirectional multistage interconnection network based on
4 x 4 switches (called Elite), which can be viewed as a quaternary fat-tree. A quaternary fat-tree
belongs to the more general class of the k -ary n -trees [15]. A quaternary fat-tree of dimension n
is composed of 4n processing nodes and n ·4n−1 switches interconnected as a delta network, and
can be recursively built by connecting four quaternary fat trees of dimension n−1. It uses worm-
hole switching, with two virtual channels per physical link, source-based routing, and adaptive
routing. Some of the most important aspects of this network are: the integration of the local
memory (either in the NIC or in the host) into a distributed virtual shared memory, the support
for zero-copy remote DMA transactions and the hardware support for collective communica-
tion.

The routing information is attached to the header before injecting the packet into the net-
work and is composed of a sequence of switch link tags. As the packet moves inside the network,
each switch removes the first routing tag from the header, and forwards the packet to the next
switch in the route or to the final destination. The routing tag can identify either a single output
link (used for unicast communication) or a group of adjacent links (used for multicast commu-
nication).

The transmission of each packet is pipelined into the network using wormhole switching. At
link level, each packet is partitioned in smaller units called flits (flow control digits) [5] of 16 bits.
The header flit opens a circuit between source and destination, and this path stays in place until
the destination sends an acknowledgement to the source. At this point, the circuit is closed by
sending an EOP token.

Minimal routing between any pair of nodes is accomplished by sending the message to one
of the nearest common ancestor switches and from there to the destination. In this way, each
packet experiences two routing phases: an adaptive ascending phase (in forward direction) to
get to a nearest common ancestor, where the switches forward the packet through the least
loaded link; and a deterministic descending phase (in backward direction) to the destination.

3 Collective communication on the Quadrics network

The hardware multicast capability of the network allows packets to be sent to multiple destina-
tions. The Elite switches can forward a packet to several output ports, with the only restriction
that these ports must be contiguous. In this way, a group of adjacent nodes can be reached by
using a single hardware multicast transaction.

The routing phases for multicast packets differ from those defined for unicast packets. With
multicast, during the ascending phase the nearest common ancestor switch for the source node
and the destination group is reached. After that, the turnaround routing step is performed and,
during the second routing phase, the packet spans the appropriate links to reach all the destina-
tion nodes.

A situation where multiple multicast packets proceed in parallel may lead to deadlock [7].
For this reason, in order to guarantee deadlock-freedom, several limitations apply to the routing
of multicast packets. These restrictions are based on the concept of Broadcast Tree and Root
Switch:

Definition 1 A Broadcast Tree, in a fat-tree network topology, is composed of the links and switches
that provide a descending path between the top leftmost switch in the network and all the nodes.

3

It can also be defined as the links and switches that provide an ascending path between all the
nodes and the top leftmost switch.

Figure 1(a) shows the default broadcast tree for a 16-node network (dashed lines).

Definition 2 A Root Switch for any given group of nodes refers to the nearest common ancestor
switch which belongs to the broadcast tree for that group of nodes.

Figure 1(c) shows the root switch (filled) for the groups highlighted in gray and black.
The Elite switches serialize incoming multicast packets if there is some overlap among the re-

quested output ports, otherwise they can proceed in parallel. When sending a multicast packet,
the root switch is used to perform the turnaround routing. Thus, at this point, the packet starts
to be replicated to several output ports. In the QsNET, a multicast packet can only take paths
included in the broadcast tree. According to this, only switches that are included in the broad-
cast tree are allowed to be used as root switches by the system routing tables and the switches
configuration. In this way, simultaneous multicasts are serialized through the root switch and,
therefore, deadlocks are avoided.

A communication example which involves two multicast groups is presented in Figure 1 (b).
The gray and black nodes represent two groups with a partial overlap of destinations, the left-
most node in each group being the source. Let’s assume that both sources send a packet to its
group, and both packets arrive to the root switch (second stage leftmost switch) at the same time
with the same priority. As there is overlap on the requested output ports, the switch arbiter only
allows one packet to proceed (black packet, Figure 1(c)), while the other one is blocked until its
resources are available (gray packet, Figure 1(d)).

For a multicast packet to be successfully delivered, a positive acknowledgement must be re-
ceived from all the recipients of the multicast group. The Elite switches combine the acknowl-
edgements, as pioneered by the NYU Ultracomputer [2, 16], returning a single one to the source.
Acknowledgements are combined in a way that the “worst” ack wins (a network error wins over
an unsuccessful transaction, which on its turn wins over a successful one), returning a positive
ack only when all the partners in the collective communication complete the distributed trans-
action with success.

4 Hardware-based multicast trees

As stated in Section 3, the Quadrics network hardware support for collective communication can
only be used when all the destination nodes are contiguous. Otherwise, a software-based multi-
cast algorithm based on a balanced tree is used [13]. This approach provides significantly lower
performance than the hardware-based multicast since it is based on point-to-point messages.

In order to overcome the hardware multicast limitations and provide high-performance col-
lective communication, a hardware-based multicast tree technique has been presented in [6].
This technique uses a multicast tree to distribute the data among all the destinations, but with
the particular issue that each message is a hardware multicast. In this way, the source node
sends a multicast message to a subset of contiguous destinations, each of which forwards the
message to another subset. Eventually, all destinations will receive the message. A key factor to
achieve the best possible performance is the parallel transmission of as many multicast transac-
tions as possible, once a subgroup of adjacent destinations has received a copy of the message.
It is worth noting that, for the correct operation of this mechanism, deadlock-freedom has to be
guaranteed. This mechanism is likely to provide significant performance improvements when

4

(a) Broadcast tree (b) Two multicast communica-
tion groups

(c) Serialization through the root
switch

(d) Final transaction

Figure 1: Hardware Multicast

the number of destinations is high and there are a few gaps in the group allocation (e.g., due to
some faulty nodes).

Figure 2 shows an example comparing the behavior of the original software-based tree (Fig-
ure 2(a)), used by the Quadrics system software, and the proposed hardware-based tree (Figure
2(b)). The example considers a multicast group composed of 13 non-adjacent nodes. In the
software tree, once each node receives the message from its parent, it forwards one copy to each
one of its children. In the hardware tree, the source node sends a hardware multicast to one
subgroup of adjacent nodes and, after that, each node in the subgroup forwards the message to
another subgroup. The sequence of multicast steps for the hardware-based tree is shown in Fig-
ure 3. Figure 3(a) shows the first step and Figure 3(b) shows the second step. As can be seen, the
hardware tree provides, in general, lower tree depth and thus lower latency. Nevertheless, the
performance of the hardware-based tree relies on the possibility of parallelizing the hardware
multicasts that are to be sent during the same tree step.

In order for several hardware multicast messages, with different sources, to proceed in par-

5

allel without collisions among them, several routing restrictions have to be taken into account:

• All multicast messages must follow the broadcast tree once the replication to several out-
put ports at some switch starts. In other words, the root switch for any given multicast
subset must belong to the multicast tree. In this way deadlocks are avoided. The root
switches used during the two multicast steps of the described example are highlighted in
Figure 3.

• Given two multicast operations with different sources and destinations, they can proceed
in parallel (that is, with no serialization at any switch or link) only if they do not share any
link. That is the case for the three parallel hardware-based multicasts shown on Figure
3(b).

2

0

6

97

8 11

12

13

4

3

14

15

0

11 13 14 15

6 7

12

8 9 2 3 4

(a) (b)

time

Figure 2: (a) Software- and (b) hardware-based multicast trees.

0 1 2 3 4 5 6 7 8 9 10 11 12 14 1513

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 14 1513

(b)

Figure 3: Hardware-based multicast tree: (a) first step; (b) second step.

6

5 Hardware-based multicast tree algorithm

Obtaining the optimal (minimum depth) hardware-based multicast tree for any given problem
is not a simple task. There is no rule to select the set of destination nodes, to be reached at each
tree step, that guarantees an optimal solution. For this reason, two different algorithms have
been developed: a backtracking algorithm and a greedy algorithm. The backtracking approach
explores all the solutions for any given problem in order to find the optimal one. The computa-
tional cost of such an algorithm is exponential, and thus impractical for a real implementation.
On the other hand, the greedy approach applies some heuristics to find a good solution, but
does not guarantee that the optimal tree will be found. Nevertheless, the number of iterations
of the greedy algorithm is proportional to the tree depth, leading to a practical implementation
with an extremely low computational cost.

5.1 Preliminary considerations

As it has been described in Section 4, a hardware-based multicast tree step consists, in general,
of a set of parallel hardware multicasts sent by a number of nodes to disjoint sets of contigu-
ous destinations. After the necessary number of steps, all the destinations will be reached. An
optimal tree, in terms of latency, has the minimum number of steps, as shown in [3].

For an optimal solution to be found, all the alternative multicast trees should be explored.
That is, at each tree step, all the alternative destination sets of contiguous nodes, reachable in
parallel by the nodes that have a copy of the message during that step, have to be checked. And
from those destinations, all the combinations of destinations that can be reached during the
next step, and so on. This approach has an intrinsically exponential cost. A preliminary analysis
of the problem indicates that there is no algorithm (or rule) that makes it possible to find, in
general, an optimal multicast tree with logarithmic cost, that is, proportional to the tree depth.
For this reason, two different algorithms have been developed:

• a backtracking algorithm, Algorithm 1, that explores all the solutions, providing an optimal
solution to the problem (Section 5.2). This algorithm is optimized by stopping and back-
tracking as soon as the current partial solution cannot improve the best solution already
found.

• a greedy algorithm, Algorithm 2, that takes a decision at each tree step, providing an opti-
mal or near-optimal solution with small computational cost (Section 5.3). This algorithm
uses an heuristic to select the appropriate sequence of groups to be reached during each
step of the multicast tree.

5.2 Backtracking algorithm

As a refinement of exhaustive search, a backtracking algorithm builds a feasible solution incre-
mentally. A solution is a sequence of decisions that defines the set of groups of adjacent nodes
that are reached at each tree step (an example is shown in Figure 2(b)). After a first solution to
the problem is found, only partial solutions that improve the current best solution are explored.
In this way, the depth of the search tree is reduced.

As it has been stated, a hardware-based multicast tree is composed of one or more steps.
During each step of the tree, one or more hardware-based multicast transactions are transmit-
ted in parallel from the nodes that already received the message to groups of adjacent nodes

7

still waiting for the message. The proposed backtracking algorithm (Algorithm 1) is based on
the sequential checking of all possible combinations of groups of adjacent nodes reachable in
parallel from the nodes that received the message at a previous tree step. In this way, the al-
gorithm selects a combination of as many groups as the number of source nodes (nodes that
already received the message) out of the set of pending destination groups (tag ❶ in Algorithm
1). It is worth noting that the proposed multicast mechanism relies on the parallel transmission
of hardware-based multicast messages during each tree step. For this reason, at this point it is
checked if the selected combination of destination groups can be reached in parallel from the
sources (there is no overlap among their routes) ❷. If the selected groups are not reachable in
parallel, they are split into smaller groups in such a way that the routing overlaps are removed
and an overlap-free set of destination groups is chosen ❸ ❹. In this way, at each tree step as many
destination groups as nodes which already received a copy of the message are reached in paral-
lel ❺. Later, the source and destination lists are updated accordingly, and, if there are pending
destinations, a recursive call is made to explore the next tree step ❻. Eventually, the algorithm
finds a sequence where all the destinations are reached, that is, a solution to the problem ❼.
Next, additional solutions to the problem are explored by repeating the above procedure with
different combinations of groups ❽.

The algorithm is implemented in such a way that, once the first solution is obtained, only
solutions that may improve the best solution found are explored ❾. A further refinement of this
algorithm is obtaining a good first solution. In this way, the better solutions space is significantly
reduced. The heuristic used to find a good solution for the first iteration of the algorithm, con-
sists of sorting the original list of groups of adjacent nodes in decreasing order of sizes (groups
with equal sizes are reverse-ordered according to their root switch level). This heuristic is de-
scribed in detail in Section 5.3, since it was originally devised for the greedy algorithm.

As stated in the Algorithm 1 description above, in order for the parallel reachability of a given
set of destination groups from a given set of source nodes to be checked, two conditions are
verified: backward routing overlap and forward routing overlap. If any link overlap exists, ei-
ther during the forward routing phase or during the backward routing phase (Section 2) of two
or more hardware-based multicast transactions, then the set of pre-selected destinations would
not be reachable in parallel from the sources (the transactions would be serialized through the
overlapping switches). These dependencies can be removed by splitting one or more groups of
adjacent nodes into smaller groups. The overlap resolution mechanism could have been imple-
mented by trying all the possible combinations of groups splitted into all the possible ways. But
this would have increased the computational cost of the backtracking algorithm to even higher
levels. An approach that takes into account the specific properties of the overlaps has been used
instead (the detailed procedure for doing so is described below).

5.2.1 Backward routing overlap

Backward routing overlap occurs when there is overlap among the broadcast trees of the selected
groups of nodes. It has to be mentioned that the backward routing overlap does not depend on
the source nodes, since it appears on the backward routing phase, which always follows paths
included in the broadcast tree (Section 3) of the destination groups.

Let [x − x′] denote a group of adjacent nodes from node x to node x′, [x − x′] = {i |x ≤ i ≤ x′}.
Let [x1 − x′1] , [x2 − x′2] , . . . , [xn − x′n] denote a set of n groups of adjacent nodes.
Given two groups of adjacent nodes [x − x′] and [y − y′], a backward routing overlap exists at

level l if and only if:

8

Algorithm 1: optimal tree using backtracking

Procedure optimal_tree
Input: the source nodes list (srcs), the destination nodes list (dests),

the sublist of destination nodes to be tested (dests_to_try),
Output: the partial solution being obtained (sol),

the steps of the partial solution being obtained (steps),
the best found solution (best_sol),
the steps of the best found solution (best_steps)

Note: the destination nodes list is sorted before the initial call
according to number of nodes and root switch level

begin
copy srcs, dests, dests_to_try lists to local variables
while (!last_combination && ❾(steps < best_steps-1))

{
❶ dests_to_try = next combination of |srcs| groups out of dests_to_try

(update last_combination)
❷ if backward_routing_overlap(dests_to_try)

{
/* generate two alternative lists where the overlap is removed */

❸ backward_routing_overlap_resolution(dests_to_try, left_try, right_try)
/* check two alternative branches of the solutions tree */
optimal_tree(srcs, dests, right_try, sol, steps, best_sol, best_steps)
optimal_tree(srcs, dests, left_try, sol, steps, best_sol, best_steps)
}

❷ else if (forward_routing_overlap(srcs, dests_to_try, limited_level))
{
foreach group in dests_to_try with level >= limited_level

{
/* generate an alternative list where the overlap

is likely to be removed */
❹ dests_to_try = split_a_group(dests_to_try,group)

optimal_tree(srcs, dests, dests_to_try, sol, steps, best_sol, best_steps)
}

}
else

{
/* groups in dests_to_try are reachable in parallel,

account for a new tree step */
❺ steps++

/* update dests and srcs according to reached groups */
update_dests(dests, dests_to_try)
update_srcs(srcs, dests_to_try)
update_solution(sol)
if (dests != ∅) /* still pending destinations */

{
❻ optimal_tree(srcs, dests, dests, sol, steps, best_sol, best_steps)

}
else if (steps < best_steps)

/* a better solution is found */
❼ update_solution(best_sol, sol)
}

}
/* explore an alternative branch of the solutions tree */

❽ steps--
copy srcs, dests, dests_to_try lists to local variables
}

end

9

• both groups use at least two links of the broadcast tree at level l,
(⌊

x
4l

⌋
6=

⌊
x′

4l

⌋)
∧

(⌊ y
4l

⌋
6=

⌊
y′

4l

⌋)
,

and,

• both groups share one of those links,
(⌊

x′

4l

⌋
=

⌊ y
4l

⌋)
∨

(⌊
x
4l

⌋
=

⌊
y′

4l

⌋)
.

wherebxc indicates the immediate lower integer of x, and l refers to a switch level, being level 0
that where the nodes are attached to. The condition for backward routing overlap is given by:(⌊ x

4l

⌋
6=

⌊
x′

4l

⌋)
∧

(⌊ y

4l

⌋
6=

⌊
y′

4l

⌋)
∧

((⌊
x′

4l

⌋
=

⌊ y

4l

⌋)
∨

(⌊ x

4l

⌋
=

⌊
y′

4l

⌋))
(1)

As an example, if Condition 1 is applied to the groups [2, 5], [7, 15] (depicted on the top left
corner of Figure 4), backward routing overlap occurs at level one as the next condition is true:(⌊

2
41

⌋
6=

⌊
5
41

⌋)
∧

(⌊
7
41

⌋
6=

⌊
15
41

⌋)
∧

((⌊
5
41

⌋
=

⌊
7
41

⌋)
∨

(⌊
2
41

⌋
=

⌊
15
41

⌋))
=

= (0 6= 1) ∧ (1 6= 3) ∧ ((1 = 1) ∨ (0 = 3)) = 1 ∧ 1 ∧ (1 ∨ 0) = 1

Since the overlapping groups cannot be reached in parallel by hardware-based multicast
transactions, the selected combination of groups is not part of a valid multicast tree (Section
4). Nevertheless, the overlap can be removed by splitting some groups into smaller groups in
such a way that the selected combination of groups (or part of it, if not enough source nodes are
available at a particular tree step) can be reached.

To do so, a backward routing overlap removal mechanism has been implemented in the
following way: the combination of pre-selected groups (which is implemented using a list) is
checked for overlaps among groups, by following the groups from left to right (checking every
group against all the others). When the first overlap is found, two lists of pre-selected groups
are generated by splitting some groups: first, the latest group checked is splitted to remove de-
pendencies (right group); second, the group/s already checked is/are splitted (left group/s). The
remaining groups in the list are not rearranged at this point, if additional overlaps exist, they
will be detected later. After that, two recursive calls are made with the two newly generated lists
(that is, two branches of the solution tree are explored) and the procedure is executed until an
overlap-free list of groups is selected. This technique guarantees that an overlap-free combina-
tion of size the number of source nodes from the list of pending destinations will be selected.

Figure 4 shows the solutions tree explored by the algorithm on a 16-node network with the
following conditions: source node 8; original groups of adjacent destination nodes, [0, 0], [2, 5],
[7, 15]. The circle represents the source node, rounded boxes denote group/s of adjacent nodes,
and arrows represent algorithm decisions. Any path between the tree root to a leaf represents
a solution to the hardware-based multicast tree problem. For instance, following the rightmost
branches the solution is: during the first step of the tree node 8 sends the packet to group [7, 15],
during the second step two nodes in [8, 8], [7, 15] send two copies of the packet to groups [0, 0]
and [2, 5], respectively. As can be seen, the number of rounded boxes between the root node and
a leaf is equal to the tree depth, which is equivalent to the number of steps of the multicast tree
(two in the example).

The dotted ellipse highlights the point in a partial solution where a backward routing overlap
is detected. Group [2, 5] and group [7, 15] share a link in their broadcast trees at switch level 1, as
it is indicated in the network representation on the top left corner of the figure (the overlapping

10

8

[0,0] [2,5] [7,15]

[2,5],[7,7] [2,5],[8,15] [2,3],[4,5] [2,3],[7,15] [4,5],[7,15] [0,0],[7,15] [0,0],[2,5][7,7],[8,15]

[8,15] [7,7] [2,5] [7,15] [4,5] [2,3]

[2,5],[7,15]

[2,5],[7,7],[8,15] [2,3],[4,5],[7,15]

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �

Figure 4: Example of the backtracking algorithm operation with backward routing overlap.

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� � 2

[0,0]

[3,3],[4,7] [4,7],[9,12]

[9,12][3,7]

[0,0],[3,7],[14,15][0,0],[9,12],[14,15][9,12],[14,15][3,7],[14,15][9,11],[12,12][3,7],[12,12][3,7],[9,11]

[12,12],[14,15][3,3],[14,15][4,7],[14,15][9,12],[14,15] [9,11],[14,15] [3,7],[14,15] [9,12] [3,7]

[3,7],[9,12]

[3,3],[4,7],[9,12] [3,7],[9,11],[12,12]

[3,3],[9,12]

Figure 5: Example of the backtracking algorithm operation with forward routing overlap.

groups are highlighted). The overlap resolution mechanism implemented performs two differ-
ent rearrangements of the pre-selected groups ([2, 5], [7, 15]), as described above: first, group
[7, 15] (right group) is splitted into groups [7, 7] and [8, 15]; second, group [2, 5] (left group) is
splitted into groups [2, 3], [4, 5]. From this point two different solutions sub-trees are explored,
as indicated in the figure, by performing two recursive calls to the backtracking procedure with
the new two lists ([2, 5], [7, 7], [8, 15] and [2, 3], [4, 5], [7, 15]). As can be seen, by splitting the over-
lapping groups in this way, two alternative overlap-free group arrangements are explored.

5.2.2 Forward routing overlap

After arranging the selected groups of destinations in a backward routing overlap-free combina-
tion, it has to be verified if that particular combination of groups is reachable from the source
nodes. Forward routing overlap occurs when there are not enough disjoint routes to reach the
root nodes of the pre-selected destination groups from the available source nodes. As in the
case of the backward routing overlap, splitting the destination groups into smaller groups in the
appropriate way (described below) allows the overlaps to be removed.

The forward routing overlap detection depends, not only on the destination groups, but also
on the source nodes and which nodes try to send to each destination group. In order to pro-

11

vide a simple solution to this problem, this is addressed in the following way. The algorithm
accounts for the number of root switches (Section 3) a particular list of source nodes can reach
in parallel at each switch level, starting with the highest level, for short capabilities. Each node
is accounted only once, that is, the sum of the capabilities equals the number of nodes. Besides,
it calculates the number of root switches per switch level a particular list of destination groups
needs for them to be reached in parallel, for short needs. By comparing, level by level (in de-
creasing order), the routing capabilities of the sources with the routing needs of the destinations,
limitations (which correspond to link overlaps) are detected. At each level, if the capabilities are
greater than the needs, the remaining capabilities are moved to the immediate lower level and
the comparison continues at that level. If the needs are greater than the capabilities a forward
routing overlap is detected. This mechanism allows overlaps to be detected, while it is avoided
to check all the possible combinations of source nodes against the destination groups.

The problem can be formalized in the following way:
Let array c = (cL−1, cL−2, ..., c0) denote the capabilities of a set of nodes in a network with L

switch levels, where ci denotes the capabilities of that set of nodes for level i.
Let array n = (nL−1, nL−2, ..., n0) denote the needs of a list of destination groups of adjacent

nodes in a network with L switch levels, where ni denotes the needs of those node groups at level
i.

Let d = (dL−1, dL−2, ..., d0) be the array of differences between c and n calculated in the
following way:

dL−1 = cL−1 − nL−1 di, i<L−1 =
{

ci − ni

ci − ni + di+1

if di+1 ≤ 0
if di+1 > 0

(2)

A forward routing overlap exists when the following condition holds:

∃ l ∈ N, 0 ≤ l < L | dl < 0 (3)

Overlaps are checked in decreasing order of levels. When an overlap is detected, the forward
routing overlap removal procedure selects all the groups at and above the level where the overlap
is detected. Then, one of the groups is splitted to produce subgroups with the root switch at an
immediate lower level. After that, a new call to the backtracking procedure is performed. If no
additional overlaps are detected the algorithm proceeds as stated in Section 5.2.

This procedure is repeated for all the groups with root switches at the level where the limita-
tion is detected and higher, one by one. This is done in this way because there is no knowledge
about the particular groups that overlap, since no matching between source nodes and desti-
nation groups is done. This has been thought to be the less costly approach since, in the worst
case, all the groups will be splitted; otherwise, all the possible pairs source node - destination
group should be tested. If the resulting list of destinations has additional overlaps, they will be
detected and removed on a later recursive call.

Figure 5 shows the solutions explored by the algorithm on a 16-node network with the follow-
ing conditions: source node 2; original groups of adjacent nodes, [0, 0], [3, 7], [9, 12]. The ellipse
indicates the point in a partial solution where a forward routing overlap is detected. In this case,
group [3, 7] and group [9, 12] share a link at switch level 1 because the source nodes are attached
to the same level 0 switch (nodes 2 and 0, in the example). This is indicated in the network

12

representation on the top left corner of the figure (the rounded boxes indicate the overlapping
groups). This overlap is detected with the mechanism described above based on source capabil-
ities and destination needs. The source nodes at this point of the solutions tree are: node 2, and
node 0 with capabilities c = (1, 1). As can be seen in the figure, from nodes 0 and 2 in a 16-node
network one root switch at level 1 can be reached, and additionally a root switch at level 0. As an
alternative, two root switches at level 0 could be reached in parallel. The destination groups are:
[3, 7], [9, 12] with needs n = (2, 0). The differences array according to Equation 2 is d = (−1, 1).
As there is a limitation at level 1, the list of destination groups has a forward routing overlap.

At this point the backtracking algorithm explores two solution sub-trees, each one resulting
from splitting one of the two overlapping groups into smaller subgroups to remove the depen-
dencies. First, group [3, 7] is splitted into groups [3, 3] and [4, 7]; second, group [9, 12] is splitted
into groups [9, 11], [12, 12]. After that, two recursive calls to the backtracking procedure with the
new two pending destination lists ([3, 3], [4, 7], [9, 12] and [3, 7], [9, 11], [12, 12]) are performed.

As described above and indicated in Algorithm 1, the routing overlap removal mechanisms
are applied in a pre-defined order. When both overlap types exist in a particular set of destina-
tion groups to be checked, backward routing overlaps are removed first and, after that, forward
routing overlaps are removed. As the backward routing overlap takes place in a later stage in
packet routing, when the overlapping groups are splitted the resulting groups are bigger than
the groups that would be obtained if the forward routing overlap was removed first. As the goal
is finding the minimum steps multicast tree, reaching bigger groups as soon as possible will
provide better solutions.

5.3 Greedy algorithm

A greedy hardware multicast tree algorithm (Algorithm 2) has been developed to provide an im-
plementation with practical computational cost. The structure of this algorithm is based on the
backtracking approach presented in previous section. The main difference is that no additional
solutions are explored after the first solution is found. This solution will be demonstrated to be
a good solution to the problem of finding the optimal hardware multicast tree.

The key factor of the greedy algorithm is an heuristic for choosing the group (or set of groups)
to be reached during each step of the multicast tree. At any step of the hardware multicast tree,
the optimal subset of groups of destination nodes to be selected is not known. Nevertheless, two
properties of any given destination group give an indication of the potential capabilities of that
group to reach adittional destinations during subsequent multicast tree steps:

• the number of nodes in the group: the bigger the groups, the more destinations they are
capable to reach in parallel. This indicates the maximum number of multicasts that might
be transmitted in parallel in the next step by the corresponding group. This maximum
number can be reached if there is no routing overlap.

• the level of the root switch for the group: this parameter gives an indication of the rout-
ing alternatives from that group to a given root switch (and, hence, to groups of adjacent
nodes). This is related to the concept of routing capabilities presented in the previous sec-
tion and is further explained below using the example in Figure 6.

Figure 6 provides some insight into this issue by comparing the routing capabilities of two
groups composed of two nodes in a 16-node system. Figure 6(a) shows a 2-node group (group
[6, 7]) with the root switch located at level 0. The capabilities array for this group is c = (1, 1).This

13

Algorithm 2: multicast tree using a greedy algorithm

Procedure greedy_tree
Input: the source nodes list (srcs), the destination nodes list (dests),

the sublist of destination nodes to be tested (dests_to_try),
Output: the partial solution being obtained (sol),

the steps of the partial solution being obtained (steps)
Note: the destination nodes list is sorted before the initial

call according to number of nodes and root switch level
begin

copy srcs, dests, dests_to_try lists to local variables
dests_to_try = next combination of |srcs| groups out of dests_to_try
if backward_routing_overlap(dests_to_try)

{
/* generate two alternative lists where the overlap is removed */
backward_routing_overlap_resolution(dests_to_try, left_try, right_try)
/* check one branch of the solutions tree */
greedy_tree(srcs, dests, right_try, sol, steps)
}
else if (forward_routing_overlap(srcs, dests_to_try, limited_level))

{
select a group in dests_to_try with level >= limited_level
/* generate an alternative list where the overlap

is likely to be removed */
dests_to_try = split_a_group(dests_to_try,group)
greedy_tree(srcs, dests, dests_to_try, sol, steps)
}
else

{
/* groups in dests_to_try are reachable in parallel,

account for a new tree step */
steps++
/* update dests and srcs according to reached groups */
update_dests(dests_to_try, dests)
update_srcs(dests_to_try, srcs)
update_solution(sol)
if (dests != ∅) /* still pending destinations */

{
greedy_tree(srcs, dests, dests, sol, steps)
}

}
}

end

14

configuration allows reaching only one group with the root switch at level 1 and another group
with the root switch at level 0 (two groups with the root switch at level 0 are reachable too). Figure
6(b) shows a 2-node group with the root switch at level 1 (group [7, 8]). The capabilities array for
this group is c = (2, 0). In this case, two groups with their root switch at level 1 are reachable
in parallel, provided they do not share any link, as stated in Section 4. All the combinations of
groups with root switches at lower levels are possible as well, that is: one group with the root
switch at level 1 and one group with the group switch at level 0, or two groups with the root
switch at level 0. As can be seen, the routing capabilities of the group in Figure 6(b) include
those provided by the group in Figure 6(a).

0 1 2 3 4 5 6 7 8 9 10 11 12 14 1513

(a)

� �
� �

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	

0 1 2 3 4 5 6 7 8 9 10 11 12 14 1513

(b)

Figure 6: Hardware-based multicast capabilities of two subgroups composed of 2 nodes.

Considering two disjoint groups of adjacent nodes, in order to compare their capabilities to
reach additional destinations, several situations are possible:

• One of the groups has higher root switch level and more nodes. That group is the best one
because its routing capabilities include and overcome all the others’.

• Two groups have the same root switch level. In this case, it is clear that the best group is
the one with more nodes.

• Two groups have the same amount of nodes and different root switch level. The best one
(in terms of multicast capabilities) will be the group with the higher-level root switch.

• In all the other cases the best group depends on the remaining destinations.

Taking into account the above considerations, the heuristic applied in the proposed algorithm
consists of sorting the original list of destination groups in decreasing order of nodes and root
switch level. In this way, the algorithm, which is based on the backtracking implementation,
selects destination groups in the established order.

During the initial algorithm iteration, the first group in the list is selected as the destination
for the first step of the multicast tree. Since this is the first step, with only one source and one
destination group, the destinations can always be reached in parallel using a hardware-based
multicast. For the following steps of the multicast tree, the next sublist of destination groups

15

��

��

��

��

��

��

��

	�

�

���

�� �� ��	 ��� ��� ���� ���	 ��
�

�
���

�������

�������

�������

Figure 7: Maximum steps required by a hardware-based multicast tree.

of size the number of source nodes (nodes that already received the message) out of the list of
pending destination groups is selected. In this way, potentially better groups are selected first.
If any routing overlap problem arises, it is solved in the same way used for the backtracking
approach, with the difference that only the first alternative is explored.

The computational cost of the greedy algorithm is proportional to the multicast tree depth,
and thus to the logarithm of the number of groups of adjacent destination nodes. This provides
an approach that can be implemented in practice with low computational cost, with the limita-
tion that finding the optimal solution is not guaranteed.

6 Results

As first step, the developed greedy algorithm has been tested in order to verify the optimal so-
lution matching ratio. This has been done by comparing the solutions the greedy algorithm
obtains with the optimal solution found using the backtracking algorithm. Tests have been con-
ducted on configurations ranging from 16 to 4096-node networks, with faulty node percentages
ranging from 0.1% to 10%. One thousand random faulty node mappings were generated for each
configuration. Our tests show that the greedy algorithm finds an optimal solution for 99% of the
cases. This percentage increases as the amount of faulty nodes decreases, being 100% when less
than 1% of the nodes are faulty. A summary of the results is shown on Figure 7. Each colored
area covers the configurations where the worst case tree depth (2, 3 or 4) is the same. It has to be
mentioned that, as Figure 7 shows worst case values, the closer a given configuration is to its left
area limit, the higher the probabilities for that configuration to be solved in one step less.

Detailed results of multicast trees on large-scale QsNET clusters are shown in Table 1. These
tests have been designed to analyze the greedy algorithm performance when a fraction of the
nodes is not operational. Networks with 1024, 2048 and 4096 nodes have been simulated. The

16

Faulty Nodes
Network Size 0.2% 0.4% 0.6% 0.8% 1%

1024 2 2 2 2 2
2048 2 2 2 2 2

4096 2 2 2
2/0.998
3/0.002

2/0.582
3/0.418

Table 1: Optimal hardware-based multicast tree steps for different configurations.

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4

La
te

nc
y

(µ
s)

Faulty Nodes

Barrier Test - 16 Nodes

SW tree
HW tree

(a)

4

6

8

10

12

14

16

18

0 1 2 3 4

La
te

nc
y

(µ
s)

Faulty Nodes

Barrier Test - 32 Nodes

SW tree
HW tree

(b)

Figure 8: Barrier synchronization latencies.

number of nodes not taking part in the multicast transaction has been varied from 0.2% to 1%
in 0.2% intervals. One thousand random problems for each particular configuration have been
solved using the algorithms presented in this report. The number of steps for the optimal trees
are summarized in the table, where the notation x/y denotes a x-step tree with probability y.
The results show that any practical situation, with a realistic amount of faulty nodes, is likely to
be solved using a hardware-based multicast tree with only 2 steps. Only the largest configuration
tested, 4096 nodes, will require 3 steps for 42% of the cases when 1% of the nodes are faulty.

On the one hand, these results indicate that the proposed greedy algorithm provides an op-
timal solution to most of the cases. On the other hand, since the tree depth is very short (a maxi-
mum of 4 steps are required in the worst case for the configurations tested) the QsNET collective
communication support can be significantly improved.

In order to measure the impact of the proposed mechanism on the QsNET collective com-
munication, several experiments have been conducted. The experimental evaluation has been
performed on a 32-node cluster of Dell 1550, running Red Hat 7.1 Linux. Each node has two
1.13 GHz Pentium-III with 1GB of ECC RAM, and a Quadrics QM-400 Elan3 NIC attached to the
network through a 66MHz/64-bit PCI bus.

Figure 8 shows the average time to perform a barrier synchronization on an empty network.
The tree construction time is not taken into account, since it is computed once for each con-
figuration. Results for 16- and 32-node network configurations are shown versus the number

17

0

5

10

15

20

25

30

35

40

1 4 16 64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

Broadcast Test - 32 Nodes

SW tree
SW tree, 1 faulty node
SW tree, 2 faulty nodes
SW tree, 3 faulty nodes
SW tree, 4 faulty nodes

(a)

15

20

25

30

35

40

1 4 16 64 256 1K 4K

La
te

nc
y

(µ
s)

Message Size (bytes)

Broadcast Test - 32 Nodes

SW tree
SW tree, 1 faulty node
SW tree, 2 faulty nodes
SW tree, 3 faulty nodes
SW tree, 4 faulty nodes

(b)

Figure 9: Software-based broadcast.

of faulty nodes. As expected, the latency of the software-based barrier used by the QsNET is
insensitive to the number of nodes not taking part in the collective communication, when this
is low. This is due to the fact that a slight reduction on the destination nodes has no effect on
the multicast tree depth [4]. For a 32-node configuration with less than four faulty nodes, the
latency is constant at approximately 17µs; while it slightly decreases when four faulty nodes are
considered (15.9µs). On the other hand, it can be seen that the synchronization based on the
hardware tree developed by us, significantly outperforms the software tree used by the QsNET.
The latency required to barrier synchronize with no faulty nodes is 4µs in both configurations
tested, which corresponds to a single multicast step. The time required to barrier synchronize
the network with four faulty nodes or less is constant at 6.5µs for 16 nodes and 7µs for 32 nodes,
since only two multicast steps are required. As can be seen, when the number of faulty nodes is
low, our methodology provides between 50% and 60% faster synchronizations, for the configu-
rations tested. We expect this performance gap to broaden with larger network configurations,
since, as shown in Table 1, the scalability of our multicast mechanism is very good.

Figure 9 shows the results obtained with software-based broadcasts over a 32-node network,
and buffers globally allocated in main memory (that is, with the same virtual address in all pro-
cesses). As it has been shown for the barrier experiments, the performance of the software-based
multicast is insensitive to the number of faulty nodes when there are only a few. Only the config-
uration with four faulty nodes, as can be seen from Figure 9(b), shows a slight improvement in
latency. The peak bandwidth of 40MB/s is obtained for 32KB messages, while messages shorter
than 64 bytes are delivered in less than 22µs.

When all 32 nodes in the network take part in the collective communication, the hardware
based multicast can be directly used. In this case a peak bandwidth of 306MB/s has been mea-
sured for 256KB messages (top curve on Figure 10(a)). On the other hand, if several faulty nodes
are considered, our hardware-based multicast tree is used. The results obtained are shown on
Figure 10. As can be seen, the performance of the multicast tree developed by us is insensitive to
the number of faulty nodes for the configurations we tested, since the destinations can always
be reached in two multicast steps. The measured bandwidth of the hardware-based multicast
tree reaches a peak of 124MB/s for 64KB messages. For the tested message sizes, the bandwidth

18

0

50

100

150

200

250

300

350

1 4 16 64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

Broadcast Test - 32 Nodes

HW tree
HW tree, 1 faulty node
HW tree, 2 faulty nodes
HW tree, 3 faulty nodes
HW tree, 4 faulty nodes

(a)

5

10

15

20

25

30

1 4 16 64 256 1K 4K

La
te

nc
y

(µ
s)

Message Size (bytes)

Broadcast Test - 32 Nodes

HW tree
HW tree, 1 faulty node
HW tree, 2 faulty nodes
HW tree, 3 faulty nodes
HW tree, 4 faulty nodes

(b)

Figure 10: Hardware-based broadcast.

provided by the hardware-based multicast tree, with faulty nodes, ranges between 60% and 40%
of the bandwidth obtained with no faulty nodes. These results show that the hardware-based
multicast tree significantly outperforms the software-based multicast tree, providing a collec-
tive communication that is twice as fast in the worst case.

7 Conclusions

This paper presented hardware-based multicast trees as an alternative to overcome the limita-
tions of the hardware support for multicast provided by the Quadrics network. A backtracking al-
gorithm to calculate minimum latency hardware-based multicast trees is presented (Algorithm
1). As the backtracking implementation has an exponential cost, a greedy algorithm (Algorithm
2) has been developed in order to provide an alternative with lower computational cost; and,
hence, suitable to be implemented in the QsNET system libraries.

The proposed mechanism has been applied to solve a number of random configurations for
different network sizes. The greedy algorithm has been shown to find optimal solutions for the
majority of the tested configurations. In addition, on systems where a realistic number of faulty
nodes is considered, any multicast transaction can be performed using a hardware-based mul-
ticast tree with only two steps. That means that the hardware-based multicast tree mechanism
would significantly outperform the behavior of the software-based multicast, used by the Qs-
NET, on a large-scale network.

Results for barrier synchronization and broadcast, obtained on a 32-node cluster, show that
the hardware-based multicast tree mechanism significantly outperforms the QsNET software-
based multicast (barrier latencies are reduced to a half, while broadcast bandwidths are dou-
bled). This effect is likely to increase as the network size increases due to the poor scalability of
the software-based multicast when compared to the hardware-based multicast tree we propose.
These results show that hardware-based multicast trees provide a scalable and fault-tolerant al-
ternative to software-based multicast trees, while overcoming the limitations of the hardware
support for collective communication.

19

As future work the authors plan to fully integrate the proposed mechanism into the QsNET
software. A further experimental evaluation of the mechanism with larger network configura-
tions, and the impact of this technique on real applications and job scheduling tools, are future
venues of research too.

Acknowledgments

The authors would like to thank the Quadrics team, in particular David Addison and Mike Hinds,
for their invaluable support.

References

[1] Andrea Carol Arpaci-Dusseau. Implicit coscheduling: Coordinated scheduling with im-
plicit information in distributed systems. ACM Transactions on Computer Systems, 19(3),
August 2001. Available from http://www.cs.wisc.edu/~dusseau/Papers/tocs01.
ps .

[2] Gordon Bell. Ultracomputers: A teraflop before its time. Communications of the ACM,
35(8):27–47, August 1992.

[3] Salvador Coll. A Parameterized Communication Model for QsNET. Technical report, Digital
Systems Design Group, Technical University of Valencia, February 2002. Available from
http://ttt.upv.es/~scoll/papers/comm_model.pdf .

[4] Salvador Coll, José Duato, Francisco J. Mora, Fabrizio Petrini, and Adolfy Hoisie. Collec-
tive Communication Patterns on the Quadrics Network. In Proceedings of the Performance
Analyisis and Grid Computing Seminar, Dagstuhl, Germany, August 2002. Available from
http://ttt.upv.es/~scoll/talks/padc2002.pdf .

[5] William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks. IEEE Transactions on Computers, C-36(5):547–553, May 1987.

[6] José Duato. Improved Multicast Support for the Quadrics Network. Technical report, Par-
allel Architectures Group, Technical University of Valencia, August 2001.

[7] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks: an Engineer-
ing Approach. Morgan Kaufmann, August 2002.

[8] Dror G. Feitelson and Morris A. Jette. Improved utilization and responsiveness with gang
scheduling. In Dror G. Feitelson and Larry Rudolph, editors, 3rd Workshop on Job Schedul-
ing Strategies for Parallel Processing, volume 1291 of Lecture Notes in Computer Science,
pages 238–261, Geneva, Switzerland, April 5, 1997. Springer-Verlag. Available from http:
//www.cs.huji.ac.il/~feit/parsched/p-97-11.ps.gz .

[9] Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, Scott Pakin, and Salvador Coll. Storm:
Lightning-fast resource management. In IEEE/ACM SC2001, Baltimore, MD, November
2002. Available from http://ttt.upv.es/~scoll/papers/sc02.pdf .

20

http://www.cs.wisc.edu/~dusseau/Papers/tocs01.ps
http://www.cs.wisc.edu/~dusseau/Papers/tocs01.ps
http://ttt.upv.es/~scoll/papers/comm_model.pdf
http://ttt.upv.es/~scoll/talks/padc2002.pdf
http://www.cs.huji.ac.il/~feit/parsched/p-97-11.ps.gz
http://www.cs.huji.ac.il/~feit/parsched/p-97-11.ps.gz
http://ttt.upv.es/~scoll/papers/sc02.pdf

[10] Manish Gupta. Challenges in Developing Scalable Software for BlueGene/L. In Scaling to
New Heights Workshop, Pittsburgh, PA, May 2002. Available from http://www.psc.edu/
training/scaling/gupta.ps .

[11] Fabrizio Petrini and Wu chun Feng. Buffered coscheduling: A new methodology for multi-
tasking parallel jobs on distributed systems. In Proceedings of the International Parallel and
Distributed Processing Symposium 2000 (IPDPS 2000), volume 16, Cancun, Mexico, May 1–
5, 2000. Available from http://ipdps.eece.unm.edu/2000/papers/petrini.pdf .

[12] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Frachtenberg. The
Quadrics network: High-performance clustering technology. IEEE Micro, 22(1):46–57,
January/February 2002. ISSN 0272-1732. Available from http://www.computer.org/
micro/mi2002/pdf/m1046.pdf .

[13] Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg, and Adolfy Hoisie. Hardware- and
software-based collective communication on the Quadrics network. In Proceedings of the
2001 IEEE International Symposium on Network Computing and Applications (NCA 2001),
Cambridge, Massachusetts, October 8–10, 2001. Available from http://ttt.upv.es/
~scoll/papers/nca01_ps.gz .

[14] Fabrizio Petrini, Darren Kerbyson, and Scott Pakin. The Case of the Missing Supercom-
puter Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q. In
Proceedings of SC2003, Phoenix, Arizona, November 10–16, 2003. Available from http:
//www.c3.lanl.gov/~fabrizio/papers/sc03_noise.pdf .

[15] Fabrizio Petrini and Marco Vanneschi. Performance analysis of wormhole routed k-ary n-
trees. International Journal on Foundations of Computer Science, 9(2):157–177, June 1998.
Available from http://www.c3.lanl.gov/~fabrizio/papers/ijfcs98.ps.gz .

[16] Gregory F. Pfister and V. Alan Norton. “Hot spot” contention and combining in multistage
interconnection networks. IEEE Transactions on Computers, C-34(10):943–948, October
1985.

21

http://www.psc.edu/training/scaling/gupta.ps
http://www.psc.edu/training/scaling/gupta.ps
http://www.computer.org/micro/mi2002/pdf/m1046.pdf
http://www.computer.org/micro/mi2002/pdf/m1046.pdf
http://ttt.upv.es/~scoll/papers/nca01_ps.gz
http://ttt.upv.es/~scoll/papers/nca01_ps.gz
http://www.c3.lanl.gov/~fabrizio/papers/sc03_noise.pdf
http://www.c3.lanl.gov/~fabrizio/papers/sc03_noise.pdf
http://www.c3.lanl.gov/~fabrizio/papers/ijfcs98.ps.gz

Buffered Coscheduling: A New Methodology for
Multitasking Parallel Jobs on Distributed Systems�

Fabrizio Petriniy and Wu-chun Fengyx

ffabrizio, feng g@lanl.gov

y Computing, Information, and Communications Division
Los Alamos National Laboratory

Los Alamos, NM 87545
x School of Electrical & Computer Engineering

Purdue University
W. Lafayette, IN 47907

Abstract

Buffered coscheduling is a scheduling methodology for
time-sharing communicating processes in parallel and dis-
tributed systems. The methodology has two primary fea-
tures: communication buffering and strobing. With commu-
nication buffering, communication generated by each pro-
cessor is buffered and performed at the end of regular inter-
vals to amortize communication and scheduling overhead.
This infrastructure is then leveraged by a strobing mecha-
nism to perform a total exchange of information at the end
of each interval, thus providing global information to more
efficiently schedule communicating processes.

This paper describes how buffered coscheduling can
optimize resource utilization by analyzing workloads with
varying computational granularities, load imbalances, and
communication patterns. The experimental results, per-
formed using a detailed simulation model, show that
buffered coscheduling is very effective on fast SANs such
as Myrinet as well as slower switch-based LANs.
Keywords: distributed resource management, parallel job
scheduling, distributed operating systems, coscheduling,
gang scheduling.

1. Introduction

In recent years, researchers have developed parallel
scheduling algorithms that can be loosely organized into
three main classes, according to the degree of coordination

�This work was supported by the U.S. Dept. of Energy through Los
Alamos National Laboratory contract W-7405-ENG-36.

between processors:explicit coscheduling, local scheduling
andimplicit or dynamic coscheduling.

Explicit coscheduling [5] ensures that the scheduling
of communicating jobs is coordinated by creating a static
global list of the order in which jobs should be scheduled
and then requiring a simultaneous context-switch across all
processors. Unfortunately, this approach is neither scal-
able nor reliable. Furthermore, it requires that the schedule
of communicating processes be precomputed, thus compli-
cating the coscheduling of applications and requiring pes-
simistic assumptions about which processes communicate
with one another. Lastly, explicit coscheduling of parallel
jobs also adversely affects performance on interactive and
I/O-based jobs [10].

Conversely, local scheduling allows each processor to
independently schedule its processes. Although attractive
due to its ease of construction, the performance of fine-
grain communicating jobs degrades significantly because
scheduling is not coordinated across processors [7].

An intermediate approach developed at UC Berkeley
and MIT is implicit or dynamic coscheduling [1, 4, 12, 16]
where each local scheduler makes decisions that dynami-
cally coordinate the scheduling actions of cooperating pro-
cesses across processors. These actions are based on local
events that occur naturally within communicating applica-
tions. For example, on message arrival, a processor spec-
ulatively assumes that the sender is active and will likely
send more messages in the near future.

In this paper, we present a new methodology that conju-
gates the positive aspects of explicit and implicit coschedul-
ing using three techniques: communication buffering to
amortize communication overhead (a technique similar to

periodic boost[11]); strobing to globally exchange infor-
mation at regular intervals; and non-blocking, one-sided
communication to decouple communication and synchro-
nization. By leveraging these techniques, we can perform
effective optimizations based on the status of the parallel
machine rather than on the limited knowledge available lo-
cally to each processor.

The rest of the paper is organized as follows. Section 2
describes the motivation and features of buffered coschedul-
ing. Preliminary results are presented in Section 3. Finally,
we present our conclusions in Section 4.

2 Multitasking Parallel Jobs

Our study of resource utilization in SPMD programs in-
spired our buffered coscheduling methodology which con-
sists of communication buffering, strobing, and optionally
non-blocking communication. This methodology allows all
the communication and I/O which arise from asetof par-
allel programs to be overlapped with the computations in
those programs.

2.1 Motivation

Figure 1 shows the global processor and network utiliza-
tion during the execution of an FFT transpose algorithm
on a parallel machine with256 processors connected with
an indirect interconnection network using state-of-the-art
routers [3]. Based on these figures, we observe anuneven
and inefficient use of system resources. These characteris-
tics are shared by many SPMD programs, including un-
classified ASCI application codes such as Sweep3D [8].
Hence, there is tremendous potential for increasing resource
utilization in a parallel machine.

0

10

20

30

40

50

60

70

80

90

0 10000 20000 30000 40000 50000 60000 70000

A
ct

iv
e

pr
oc

es
so

rs

Time (cycles)

Active processors

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10000 20000 30000 40000 50000 60000 70000

N
et

w
or

k
U

til
iz

at
io

n

Time (cycles)

Network utilization

a) b)

Figure 1. Resource Utilization in an FFT
Transpose Algorithm.

Another important characteristic shared by many paral-
lel programs is their access pattern to the network. The vast
majority of parallel applications displaybursty communica-
tion patternswith alternating spikes of impulsive commu-
nication with periods of inactivity [13]. Thus, there exists

a significant amount of unused network bandwidth which
could be used for other purposes.

2.2 Communication Buffering

Instead of incurring communication and scheduling
overhead on a per-message basis, we accumulate the com-
munication messages generated by each processor and
amortize the overhead over a set of messages. By delay-
ing the communication, we allow for the global scheduling
of the communication pattern. And because we can imple-
ment zero-copy communication, this technique can theoret-
ically achieve performance comparable to OS-bypass pro-
tocols [2] without using specialized hardware.

2.3 Strobing

The uneven resource utilization and the periodic, bursty
communication patterns generated by many parallel appli-
cations can be exploited to perform a total exchange of in-
formation and a synchronization of processors at regular in-
tervals with little additional cost. This provides the paral-
lel machine with the capability of filling in communication
holes generated by parallel applications.

To provide the above capability, we propose a strobing
mechanism to support the scheduling of a set of parallel
jobs which share a parallel machine. At a high level, the
strobing mechanism performs an optimized total-exchange
of control information which then triggers the downloading
of any buffered packets into the network.

The strobe is implemented by designating one of the pro-
cessors as themaster, the one who generates the “heartbeat”
of the strobe. The generation of heartbeats is achieved by
using a timeout mechanism which can be associated with
the network interface card (NIC). This ensures that strobing
incurs little CPU overhead as most NICs can count down
and send packets asynchronously.

On reception of the heartbeat, each processor (excluding
the master) is interrupted and downloads a broadcast heart-
beat into network. After downloading the heartbeat, the
processor continues running the currently active job. (This
ensures computation is overlapped with communication.)
When all the heartbeats arrive at a processor, the proces-
sor enters a strobing phase where its kernel downloads any
buffered packets to the network1.

Figure 2 outlines how computation and communication
can be scheduled over a generic processor. At the beginning
of the heartbeat,t0, the kernel downloads control packets

1Each heartbeat contains information on which processes have packets
ready for download and which processes are asleep waiting to upload a
packet from a particular processor. This information is characterized on a
per-process basis so that on reception of the heartbeat, every processor will
know which processes have data heading for them and which processes on
that processor they are from.

t 0

δ

�����
�����
�����
�����

��������������������
��������������������
��������������������
��������������������

�������������������
�������������������
�������������������
�������������������

������
������
������
������

BARRIER

K

t t t1 2 3

BARRIER

TIME

Computation

Communication

K

K = kernel

Figure 2. Scheduling Computation and Com-
munication. The communication accumu-
lated before t0 is downloaded into the network
between t1 and t2.

for the total exchange of information. During the execu-
tion of the barrier synchronization, the user process then re-
gains control of the processor; and at the end of it, the kernel
schedules the pending communication accumulated before
t0 to be delivered in the current time slice, i.e.,�. At t1, the
processor will know the number of incoming packets that it
is going to receive in the communication time-slice as well
as the sources of the packets and will start the downloading
of outgoing packets. (This strategy can be easily extended
to deal with space-sharing where different regions run dif-
ferent sets of programs [5, 9, 17]. In this case, all regions
are synchronized by the same heartbeat.)

The total exchange of information can be properly op-
timized by exploiting the low-level features of the inter-
connection network. For example, if control packets are
given higher priority than background traffic at the send-
ing and receiving endpoints, they can be delivered with pre-
dictable network latency2 during the execution of a direct
total-exchange algorithm3 [14].

The global knowledge of the communication pattern pro-
vided by the total exchange allows for the implementation
of efficient flow-control strategies. For example, it is pos-
sible to avoid congestion inside the network by carefully
scheduling the communication pattern and limiting the neg-
ative effects of hot spots by damping the maximum amount
of information addressed to each processor during a time-
slice. The same information can be used at the kernel
level to provide fault-tolerant communication. For example,
the knowledge of the number of incoming packets greatly
simplifies the implementation of receiver-initiated recovery
protocols.

2The network latency is the time spent in the network without including
source and destination queueing delays.

3In a direct total-exchange algorithm, each packet is sent directly from
source to destination, without intermediate buffering.

3 Experimental Results

As an experimental platform, our working implementa-
tion includes a representative subset of MPI-2 on a detailed
(register-level) simulation model [15]. The run-time sup-
port on this platform includes a standard version of a sub-
stantive subset of MPI-2 and a multitasking version of the
same subset that implements the main features of our pro-
posed methodology. It is worth noting that the multitasking
MPI-2 version is actually much simpler than the sequential
one because the buffering of the communication primitives
greatly simplifies run-time support.

3.1 Characteristics of the Synthetic Workloads

As in [4], the workloads used consist of a collection
of single-program multiple-data (SPMD) parallel jobs that
alternate phases of purely local computation with phases
of interprocess communication. A parallel job consists
of a group ofP processes where each process is mapped
onto a processor throughout its execution. Processes com-
pute locally for a time uniformly selected in the interval
(g � v

2
; g + v

2
). By adjustingg, we model parallel pro-

grams with different computational granularities; and by
varyingv, we change the degree of load-imbalance across
processors. The communication phase consists of an open-
ing barrier, followed by an optional sequence of pairwise
communication events separated by small amounts of local
computation,c, and finally an optional closing barrier.

We consider three communication patterns:Bar-
rier,News, andTranspose. Barrier consists of only the clos-
ing barrier and thus contains no additional dependencies.
We can therefore use this workload to analyze how buffered
coscheduling responds to load imbalance. The other two
patterns consist of a sequence of remote writes. The com-
munication pattern generated byNewsis based on a sten-
cil with a grid, where each process exchanges information
with its four neighbors. This workload represents those ap-
plications that perform a domain decomposition of the data
set and limit their communication pattern to a fixed set of
partners.Transposeis a communication-intensive workload
that emulates the communication pattern generated by the
FFT transpose algorithm [6], where each process accesses
data on all other processes.

For our synthetic workload, we consider three parallel
jobs with the same computational granularities, load im-
balances, and communication patterns arriving at the same
time in the system. The communication granularity,c, is
fixed at8 �s. The number of communication/computation
iterations is scaled so that each job runs for approximately
one second in a dedicated environment. The system con-
sists of32 processors, and each job requires32 processes
(i.e. jobs are only time-shared).

3.2 The Simulation Model

The simulation tool that we use in our experimental eval-
uation is called SMART (Simulator of Massive ARchitec-
tures and Topologies) [15], a flexible tool designed to model
the fundamental characteristics of a massively parallel ar-
chitecture. The current version of SMART is based on the
x86 instruction set. The architectural design of the process-
ing nodes is inspired by the Pentium II family of processors.
In particular, it models a two-level cache hierarchy with a
write-back L1 policy and non-blocking caches.

Our experiments consider two networks with32 process-
ing nodes, representative of two different architectural so-
lutions. The first network is a5-dimensional cube topology
with performance characteristics similar to those of Myrinet
routing and network cards [3]. This network features a one-
way data rate of about1 Gb/s and a base network latency of
less than a�s. The second network is based on a32-port,
100-Mb/s Intel Express switch, a popular solution due its
attractive performance/price ratio.

3.3 Resource Utilization

Figures 3 and 4 show the communication/computation
characteristics of our synthetic benchmarks on a Myrinet-
based interconnection network and an Intel Express switch-
based network, respectively, as a function of the communi-
cation pattern, granularity, load imbalance, and time-slice
duration. Each bar shows the percentage of time spent in
one of the following states (averaged over all processors):
computing, context-switching and idling.

For each communication pattern in the Myrinet-based
network, we consider time-slices of0:5, 1, and2 ms. In
contrast, for the switch-based network, we consider time-
slices of2, 4, and8 ms due to the larger communication
overhead and lower bandwidth. In both cases, the context-
switch penalty is25 �s.

In each group of three bar graphs, the computational
granularity is the same, but the load imbalance is increased
as a function of the granularity itself, i.e.,v = 0 (i.e. no
variance),v = g (the variance is equal to the computational
granularity) andv = 2g (high degree of imbalance).

Figures 3 (l)-(n) and 4 (l)-(n) show the breakdown for
theBarrier, News, andTransposeworkloads when they are
run in dedicated mode with standard MPI-2 run-time sup-
port. For Figures 3 (a)-(i) and 4 (a)-(i), a black square under
a bar denotes a configuration where buffered coscheduling
achieves better resource utilization than MPI-2 user-level
communication, and a circle indicates a configuration where
the performance loss of buffered coscheduling is within5%.

Based on Figures 3 and 4, we make the following ob-
servations. First, the performance of buffered coschedul-
ing is sensitive to the context-switch latency. As context-

switch latency decreases, resource utilization and through-
put improve. Second, as the load imbalance of a program
increases, the idle time increases. Third, and most impor-
tantly, these initial results indicate that the time-slice length
is a critical parameter in determining overall performance.
A short time-slice can achieve excellent load balancing even
in the presence of highly unbalanced jobs. The downside is
that it amplifies the context-switch latency. On the other
hand, a long time-slice can virtually hide all the context-
switch latency, but it cannot reduce the load imbalance, par-
ticularly in the presence of fine-grained computation.

In Figures 3 (a), (d), and (g) which use a relatively small
time-slice in a Myrinet-based network, buffered coschedul-
ing produces higher processor utilization than when a sin-
gle job runs in a dedicated environment in over55% of the
cases and produces higher (or no worse than 5% less) re-
source utilization in nearly 75% of the cases.

Taking a big picture view of Figure 3, we conclude that
for high-performance Myrinet-like networks that buffered
coscheduling performs admirably as long as the average
computational grain size is larger than the time-slice and
the time-slice in turn is sufficiently larger than the context-
switch penalty. In addition, when the average computa-
tional grain size is larger than the time-slice, the processor
utilization is mainly influenced by the degree of imbalance.

With a less powerful interconnection network, we find
that buffered coscheduling is even more effective in enhanc-
ing resource utilization. Figures 4 (a), (d), and (g) show
that in a 100-Mb/s switch-based interconnection network,
buffered coscheduling outperforms the basic approach in
16 out of 18 configurations withBarrier, 13 out 18 with
News, and10 out 18 with Transpose. In this last case, the
performance of buffered coscheduling can be improved by
increasing the time-slice.

What makes buffered coscheduling so much more effec-
tive in a less powerful interconnection network? The answer
lies in the “excessive” communication overhead that is in-
curred in these commodity networks when each job is run in
dedicated mode with MPI-2 run-time support; the overhead
is high enough to adversely impact the resource utilization
of the processor and network. For example, by comparing
the graphs for the 500-�s computational granularity in Fig-
ures 3 (l)-(n) and Figures 4 (l)-(n), respectively, we see that
the resource utilization for the switch-based network is sig-
nificantly lower than the Myrinet network when running in
dedicated mode. Consequently, there is substantially more
room for resource-utilization improvement in the switch-
based network, and the buffered coscheduling methodology
takes full advantage this by overlapping computation with
potentially long communication delays/overhead, thus hid-
ing the communication overhead.

Irrespective of the type of network, for the cases where
jobs are perfectly balanced, i.e.,v = 0, running a sin-

IdleSwitch Compute

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
News, Timeslice 500 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Barrier, Timeslice 1 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Barrier, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
News, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Transpose, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Transpose, Timeslice 1 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Transpose, Timeslice 500 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Barrier

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
News

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Transpose

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
News, Timeslice 1 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Barrier, Timeslice 500 us

a)

d)

b) c)

e) f)

g) h) i)

l) m) n)

Figure 3. Resource Utilization on a Myrinet-Based Interconnection Network.

IdleSwitch Compute

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
News, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Barrier, Timeslice 4 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Barrier, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Barrier, Timeslice 8 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
News, Timeslice 4 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
News, Timeslice 8 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Transpose, Timeslice 8 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Transpose, Timeslice 4 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Transpose, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Barrier

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
News

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Transpose

a)

d)

b) c)

e) f)

g) h) i)

l) m) n)

Figure 4. Resource Utilization on a Switch-Based Network.

gle job only results inmarginally better performance be-
cause buffered coscheduling must “pay” the context-switch
penalty without improving the load balance because the
load is already balanced. On the other hand, in the pres-
ence of load imbalance, job multitasking can smooth the
differences in load, resulting in both higher processor and
network utilization.

As a final note, our preliminary experimental results do
not account for the effects of the memory hierarchy on the
working sets of different jobs. As a consequence, buffered
coscheduling requires a larger main memory in order to
avoid memory swapping. We consider this as the main lim-
itation of our approach.

4. Conclusion

In this paper, we presented buffered coscheduling, a
new methodology for multitasking jobs in parallel and dis-
tributed systems. This methodology significantly improves
resource utilization when compared to existing work re-
ported in the literature. It also allows for the implementation
of a global scheduling policy, as done in explicit coschedul-
ing, while maintaining the overlapping of computation and
communication provided by implicit coscheduling.

We initially addressed the complexity of a huge design
space using three families of synthetic workloads —Bar-
rier, News, andTranspose— and two types of networks
— a high-performance Myrinet-based network and a com-
modity switch-based network. Our experimental results
showed that our methodology can provide better resource
utilization, particularly in the presence of load imbalance,
communication-intensive jobs, or a commodity network.

In the future, we intend to examine the throughput
and response time of parallel jobs when using buffered
coscheduling and then comparing its performance to im-
plicit coscheduling or a space-sharing commercial solution
such as LSF. We will also consider the effects of the mem-
ory hierarchy in a real application rather than in synthetic
workloads as presented here.

References

[1] A. C. Arpaci-Dusseau, D. Culler, and A. M. Mainwaring.
Scheduling with Implicit Information in Distributed Systems.
In Proceedings of the 1998 ACM Sigmetrics International
Conference on Measurement and Modeling of Computer Sys-
tems, Madison, WI, June 1998.

[2] R. A. F. Bhoedjang, T. R¨uhl, and H. E. Bal. User-Level Net-
work Interface Protocols.IEEE Computer, 31(11):53–60,
November 1998.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawick,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A Gigabit-
per-Second Local Area Network.IEEE Micro, 15(1):29–36,
January 1995.

[4] A. C. Dusseau, R. H. Arpaci, and D. E. Culler. Effective Dis-
tributed Scheduling of Parallel Workloads. InProceedings of
the 1996 ACM Sigmetrics International Conference on Mea-
surement and Modeling of Computer Systems, Philadelphia,
PA, May 1996.

[5] D. G. Feitelson and M. A. Jette. Improved Utilization and
Responsiveness with Gang Scheduling. In D. G. Feitelson
and L. Rudolph, editors,Job Scheduling Strategies for Par-
allel Processing, volume 1291 ofLecture Notes in Computer
Science. Springer-Verlag, 1997.

[6] A. Gupta and V. Kumar. The Scalability of FFT on Parallel
Computers.IEEE Transactions on Parallel and Distributed
Systems, 4(8):922–932, August 1993.

[7] A. Gupta, A. Tucker, and S. Urushibara. The Impact of Oper-
ating System Scheduling Policies and Synchronization Meth-
ods on the Performance of Parallel Applications. InProceed-
ings of the 1991 ACM SIGMETRICS Conference, pages 120–
132, May 1991.

[8] A. Hoisie, O. Lubeck, and H. Wasserman. Scalability Anal-
ysis of Multidimensional Wavefront Algorithms on Large-
Scale SMP Clusters. InThe Ninth Symposium on the Fron-
tiers of Massively Parallel Computation (Frontiers’99), An-
napolis, MD, February 1999.

[9] M. A. Jette. Performance Characteristics of Gang Scheduling
in Multiprogrammed Environments. InSupercomputing 97,
San Jose, CA, November 1997.

[10] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph.
Implications of I/O for Gang Scheduled Workloads. In D. G.
Feitelson and L. Rudolph, editors,Job Scheduling Strategies
for Parallel Processing, volume 1291 ofLecture Notes in
Computer Science. Springer-Verlag, 1997.

[11] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das.
A Closer Look At Coscheduling Approaches for a Network
of Workstations. InEleventh ACM Symposium on Parallel
Algorithms and Architectures, SPAA’99, Saint-Malo, France,
June 1999.

[12] W. E. W. Patrick Sobalvarro, Scott Pakin and A. A. Chien.
Dynamic Coscheduling on Workstation Clusters. In D. G.
Feitelson and L. Rudolph, editors,Job Scheduling Strategies
for Parallel Processing, volume 1459 ofLecture Notes in
Computer Science, pages 231–256. Springer-Verlag, 1998.

[13] F. Petrini. Network Performance with Distributed Memory
Scientific Applications. Submitted to the Journal of Parallel
and Distributed Computing, September 1998.

[14] F. Petrini and W. Feng. Scheduling with Global Information
in Distributed Systems. InProceedings of the International
Conference on Distributed Computing Systems (ICDCS’00),
April 2000.

[15] F. Petrini and M. Vanneschi. SMART: a Simulator of Mas-
sive ARchitectures and Topologies. InInternational Con-
ference on Parallel and Distributed Systems Euro-PDS’97,
Barcelona, Spain, June 1997.

[16] P. Sobalvarro and W. E. Weihl. Demand-Based Coschedul-
ing of Parallel Jobs on Multiprogrammed Multiprocessors.
In Proceedings of the 9th International Parallel Processing
Symposium, IPPS’95, Santa Barbara, CA, April 1995.

[17] K. Suzaki and D. Walsh. Implementing the Combination of
Time Sharing and Space Sharing on AP/Linux. In D. G. Fei-
telson and L. Rudolph, editors,Job Scheduling Strategies for
Parallel Processing, volume 1459 ofLecture Notes in Com-
puter Science, pages 83–97. Springer-Verlag, 1998.

	Introduction
	Routing issues
	Collective communication on the Quadrics network
	Hardware-based multicast trees
	Hardware-based multicast tree algorithm
	Preliminary considerations
	Backtracking algorithm
	Backward routing overlap
	Forward routing overlap

	Greedy algorithm

	Results
	Conclusions
	unm.edu
	Buffered Coscheduling: A New Methodology for Multitasking Parallel Jobs on Distributed Systems

